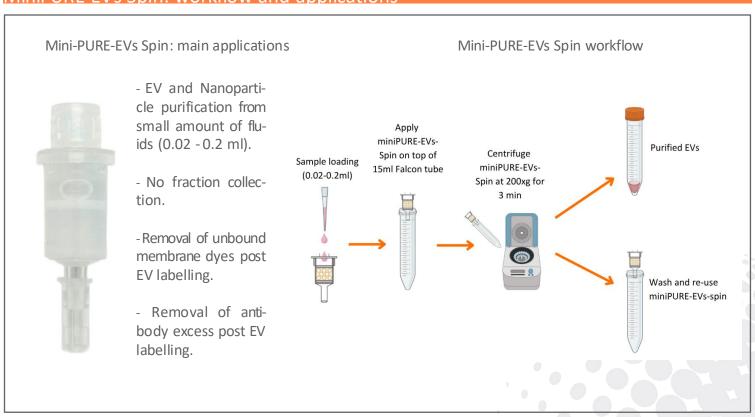


Mini-PURE-EVs Spin Column: a new platform for a fast and convenient purification of EVs and Nanoparticles from small volume amount.

Danilo Mladenović, Sirin Korulu Koc, Paolo Guazzi; HansabioMed Life Sciences

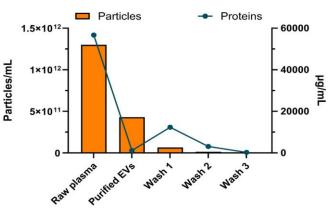
Introduction:


High-throughput sample preparation for downstream Extracellular Vesicle (EV) biomarker analysis requires scalable, affordable, fast, and easy-to-use solutions. Ultracentrifugation, density gradient centrifugation, and dead-end filtration are commonly used in the upstream processing of complex biofluids [1]. However, these methods are tedious and time-consuming, with often low sample recovery rates [2,3]. Additional pre-analytical purification steps to remove excess dye or antibodies further contribute to sample loss [4].

In this application note, we demonstrate the utility of the new MiniPURE-EVs Spin Size Exclusion Chromatography column for the quick and reproducible purification of EVs from complex samples such as plasma. Furthermore, we showcase the high efficiency of the MiniPURE-EVs Spin column in removing excess dye and antibodies prior to fluorescence analyses using Nanoparticle Tracking Analysis (NTA).

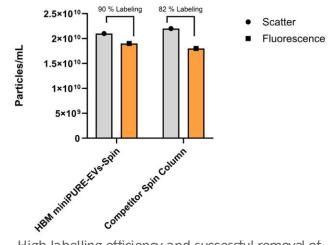
References:

- 1 Konoshenko, M. Yu.; Lekchnov, E. A.; Vlassov, A. V.; Laktionov, P. P. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Res. Int. 2018, 2018, 1–27. https://doi.org/10.1155/2018/8545347.
- 2 Brennan, K.; Martin, K.; FitzGerald, S. P.; O'Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M. M. A Comparison of Methods for the Isolation and Separation of Extracellular Vesicles from Protein and Lipid Particles in Human Serum. Sci. Rep. 2020, 10 (1), 1039. https://doi.org/10.1038/s41598-020-57497-7.
- 3 Clos-Sansalvador, M.; Monguió-Tortajada, M.; Roura, S.; Franquesa, M.; Borràs, F. E. Commonly Used Methods for Extracellular Vesicles' Enrichment: Implications in Downstream Analyses and Use. Eur. J. Cell Biol. 2022, 101 (3), 151227. https://doi.org/10.1016/j.ejcb.2022.151227.
- 4 Rautaniemi, K.; Zini, J.; Löfman, E.; Saari, H.; Haapalehto, I.; Laukka, J.; Vesamäki, S.; Efimov, A.; Yliperttula, M.; Laaksonen, T.; Vuorimaa-Laukkanen, E.; Lisitsyna, E. S. Addressing Challenges in the Removal of Unbound Dye from Passively Labelled Extracellular Vesicles. Nanoscale Adv. 4 (1), 226–240. https://doi.org/10.1039/d1na00755f.


MiniPURE-EVs Spin: workflow and applications

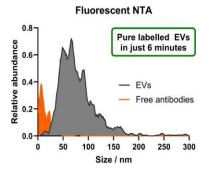
MiniPURE-EVs Spin: Application

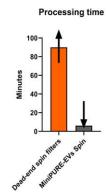
 Purification of EVs from small volume amount of biofluids.


The MiniPURE-EVs Spin column was filled with 100 μ L of plasma. EVs were eluted following a two-step centrifugation at 200 xg for 3 minutes each. In the first step, 100 μ L of sample was processed, followed by the addition of 50 μ L of PBS in the second step. The total elution volume was 150 μ L, with a turnaround time of approximately 6 minutes. After the washing steps, each filtrate was evaluated for particle number and protein amount to confirm reusability.

• EVs were successfully purified from plasma. 99 % of protein was eliminated in two sequential centrifugation steps.

• EV labelling with membrane dye: removal of dye excess with MiniPURE-EVs Spin.


U87-derived EVs were incubated with membrane dye at 37 °C for 1 hour. After incubation, a 100 μL sample was loaded onto the Mini-PURE-EVs Spin column and centrifuged for 3 minutes at 200 xg. The total eluate of 100 μL , containing pure labelled EVs, was collected and analyzed with NTA in both scatter and fluorescence modes. A comparative study was performed in parallel using a competitor's spin column.



 High labelling efficiency and successful removal of unbound dye.

• EV labelling with Fluorophore-conjugated antibody: removal of dye excess with MiniPURE-EVs Spin.

COLO-derived EVs were incubated with anti-CD9 antibody (Alexa Fluor 488 conjugate) at 37°C , for 1.5h. After the incubation, the sample (100 μL) was loaded onto the MiniPURE-Evs Spin column and centrifuged for 3 minutes at 200 xg. Additional, 100 μL of PBS was loaded and centrifugation was repeated. Total eluate of 200 μL , containing pure labeled Evs, was collected and analyzed with NTA.

- Antibody-labeled EVs were successfully purified with remarkably high efficiency. More than 90% of EVs eluted in the first 200 μ L, while free antibodies started eluting after 300 μ L.
- Turnaround time advantage vs dead-end filtration: 6 min vs 90 min.

Conclusion:

- Fast Processing: The MiniPURE-EVs Spin column enables rapid purification of extracellular vesicles (EVs).
- High Sample Recovery: It ensures high recovery rates of EVs, maintaining sample integrity.
- Reusability: The column can be reused, offering a cost-effective solution for EV isolation.
- Versatility: Suitable for both purifying EVs from raw biofluids, cell conditioned medium and for removing excess dye.
- Ease of Use: It is significantly easier to use compared to competitor columns and dead-end filters.

